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Abstract—We present a novel approach to the design of mi-
crowave structures using time-domain field synthesis. A standard
transmission-line matrix (TLM) electromagnetic analysis of the
starting geometry yields the structure response and the field
distribution on the optimizable boundary parts. A number of
characteristic frequencies equal to the number of designable pa-
rameters of the structure are determined first. For narrow-band
structures, these frequencies may be natural resonance frequen-
cies. For wide-band structures, we create appropriate resonance
conditions. The target response of the structure allows us to iden-
tify the desirable values of these frequencies. For each parameter,
a synthesis phase is then performed. In this phase, the optimizable
boundary parts are replaced by matched TLM sources that
inject sampled sinusoidal streams at the desired characteristic
frequency. The TLM field model generates an electromagnetic
field pattern. The synthesized geometry is obtained by examining
the envelope of that field pattern. Our approach is illustrated by
means of several examples.

Index Terms—Computer-aided design (CAD), electromagnetic
modeling, field-based synthesis, transmission-line matrix (TLM)
method.

I. INTRODUCTION

T HE microwave structure design problem can be formu-
lated as

(1)

where is the vector of designable parameters and is the
vector of responses obtained by electromagnetic simulation. The
designable parameters may include geometrical dimensions of
thecomponents.Theymayalsoincludesomematerialparameters
such as substrate permittivities, etc.is the objective function to
be minimized and is the vector of optimal designable parame-
ters. may be selected, if appropriate, as a generalized min–max
objective function or objective function [1].

The classical approach for solving (1) treats the electromag-
netic simulator as a black box. The derivatives of the responses
are obtained through finite differences [1]. For a vector ,
one optimization iterate involves full-wave simulations.
This significant optimization toll motivates research for smarter
optimization approaches.
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Several efficient optimization approaches have been sug-
gested. Space mapping [2] exploits the existence of another fast
“coarse” model of the circuit under consideration. A mapping
is established between the parameter spaces of the electromag-
netic and coarse models. This mapping is then used to guide
the optimization iterates. In [3], an analytical expression is
derived for the admittance matrix of a finite-element analysis of
a microstrip circuit. Another approach [4] derives the integral
equation for the current derivatives. The derivatives are then
expanded in terms of the same basis functions used in the
analysis. The same LU decomposed analysis matrix is reused
to solve for the derivatives coefficients.

The algorithm suggested in [5] exploits the time reversal
property of the transmission-line matrix (TLM) method [6],
[7]. The impulses corresponding to a desired response are
obtained through inverse Fourier transform. These impulses
are then propagated back in time to determine the geometry of
the designable discontinuity. This inversion process does not
always produce a unique geometry.

We suggest a novel approach for the synthesis of a microwave
structure using the TLM method. The designable parameters are
associated with a set of characteristic frequencies. These fre-
quencies may either be natural resonance frequencies, poles, or
zeros of responses or resonant frequencies created artificially
in the band of interest by placing short or open circuits in the
reference ports of a structure. The design specifications deter-
mine the desired values of these frequencies. A synthesis phase
is then carried out for each parameter. In this phase, the corre-
sponding optimizable boundary parts are replaced by matched
TLM sources that inject a sampled sinusoidal signal at the char-
acteristic frequencies. The field model is used to determine the
new geometry by observing the envelope of the standing-wave
field pattern in the structure.

We start with a brief review of TLM principles and of the
time-reversal approach in Section II. Our novel approach is in-
troduced in Section III. In Section IV, a number of simple ex-
amples are used to illustrate the algorithm. They have been se-
lected to demonstrate the essence of the method rather than its
ultimate potential. The examples include the design of a reen-
trant two-dimensional (2-D) cavity, an inductive post in a par-
allel-plate waveguide, and a single-resonator filter. Finally, con-
clusions are drawn in Section V.

II. TLM M ETHOD

The TLM method is a time- and space-discrete method for
modeling electromagnetic waves. A mesh of interconnected
transmission lines represents the propagation space. Developed
and first published in 1971 by Johns and Beurle, it has emerged
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as a powerful method for computer modeling of electromag-
netic fields. The main advantage of the TLM simulation resides
in the capability to model circuits of arbitrary geometry and
to compute and display the time evolution of the fields. The
TLM method exhibits excellent numerical stability and is also
suitable for modeling lossy, dispersive, and nonlinear media.

In TLM, the continuous space is discretized by introducing a
spatial network or mesh of TEM transmission lines. The electro-
magnetic field is represented by wave impulses scattered in the
mesh nodes and propagating in the transmission lines linking
the nodes. This model stresses the analogy between field and
network concepts. Field components are modeled in terms of
voltages and currents on the TLM network model. A detailed
description and bibliography of the TLM is given in [7].

The TLM algorithm consists of two alternating processes,
namely, the scattering of the wave impulses at the nodes and
the transfer of the scattered impulses to the neighboring nodes.
The wave amplitudes incident on the nodes at theth time
step and the scattered-wave amplitudesare related by the
impulse scattering matrix

(2)

The impulses scattered from each node become incident on
the neighboring nodes

(3)

is the connection matrix describing the mesh topology and
is the time-shift vector corresponding to the transit time

of the impulses between nodes.
A typical TLM electromagnetic analysis starts with the

injection of one or several impulses into the TLM mesh. The
impulses are then scattered according to (2) at each node in
the computational domain. Impulses are also reflected at the
boundaries with reflection coefficients that depend on the
boundary properties. Scattered impulses travel to neighboring
nodes during the time step according to (3). The whole
process is repeated for as many time steps as required.

The scattering matrix is equal to its inverse [6]; this allows
us to reverse the TLM process in time by simply exchanging the
dependent and independent variables of the scattering equation
without changing the scattering matrix, i.e.,

(4)

In a forward analysis, starting with a certain distribution of
sources, the fields can be determined at all points for all time
steps. In a backward analysis, we start with a certain field dis-
tribution (e.g., a desired field response) and propagate impulses
back in time to get the initial source distribution. This includes
the induced sources used to characterize the desired geometry
of the circuit.

The reverse transmission-line matrix (RTLM) algorithm de-
veloped in [5] exploits this concept. However, the RTLM ap-
proach does not result in a unique design. It may lead to a
structure different from the desired topology. In addition, the
evanescent higher order modes required for defining the bound-
aries may not be accessible at the external absorbing boundaries
within the frequency range of the discrete method used. This

Fig. 1. (top) Length of a transmission-line resonator can be optimized by
repeated analysis with different lengthsL or (bottom) synthesized directly by
injecting the resonant frequency into one end of the line and observing the
standing-wave pattern.

may reduce the resolution of the geometry. In Section III, we
present our new algorithm as an alternative design approach.

III. SYNTHESIS PROCEDURE

We illustrate the basic concept of our novel synthesis proce-
dure by considering a trivial, but fundamental example: the de-
sign of a transmission-line resonator short-circuited at both
ends (see Fig. 1). The characteristic impedanceand the prop-
agation constant of the lossless line are not explicitly known
and may be dependent onand .

The specified (known) resonant frequency is, and the des-
ignable (hitherto unknown) parameter is. is thus the char-
acteristic frequency associated with the designable parameter
that must be determined such that the line resonates at.

If of the line is not explicitly known, cannot be syn-
thesized analytically. Following the traditional optimization par-
adigm, one would select a starting value(first guess) and, by
means of repeated analysis, find an optimal valuethat mini-
mizes the difference between its associatedand the specified

.
We propose instead to inject a sinusoidal time-dependent

signal of frequency into one end of the transmission line.
The standing-wave pattern on the line will yield the exact length

of the resonator in a single experiment or field analysis.
Note that the source impedance must not necessarily be
matched to .

This method can be extended to 2-D and three-dimensional
(3-D) situations by means of the TLM method. Consider the 2-D
rectangular cavity shown in Fig. 2(a). It has been discretized by
a TLM mesh with square cells. The lengthis the designable
parameter with a starting value .

Thesituation is somewhatcomplicatedby the fact that the field
distribution is not uniform along the boundaries, and it may not
be knowna priori in the general case. We must, therefore, de-
termine the correct field distribution in a first TLM analysis. By
exciting the cavity with a band-limited signal containing its res-
onant frequency, we can establish a single-mode resonant field
that yields the desired field distribution. Once the steady state
is reached in the cavity, the TLM impulses incident on the left
boundary sample a sinusoidal signal of frequency, the
resonantfrequencyofthecavity.Furthermore,eachTLMlinkcar-
riesamplitudeandphase informationabout themodal fielddistri-
bution along . In our rectangular cavity, the impulse stream
incident on in the th boundary link is given by

(5)
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(a) (b)

(c)

Fig. 2. Illustration of the algorithm for a single parameterL. (a) Standard TLM
analysis where the impulses incident onB(x) are stored. (b) Synthesis phase
whereB(x) is replaced by matched sinusoidal impulse sources with frequency
! . (c) Synthesis phase with frequency! > ! . The electric field points in
they-direction.

where is an index for the link lines along the boundary,is the
discrete time variable, is the time step, is the amplitude,
and is the zero phase angle. The boundary impulses given by
(5) are reflected at the boundary with a reflection coefficient of

1. Note that, in our example, the amplitude varies sinu-
soidally with .

This situation is equivalent to that in Fig. 2(b), where the
boundary part is removed and replaced by TLM sources
matched to the link line impedance of frequency .
The voltage of theth source is

(6)

Note that we use the relative amplitudes and phases deter-
mined in the initial TLM analysis. The negative sign in (6) in-
dicates that the sources represent the impulses reflected from

in Fig. 2(a). Also, the factor 2 in (6) is used because half
of the source voltage drops across the source impedance. It fol-
lows that simulations based on the arrangements in Fig. 2(a) and
(b) must yield identical fields in the cavity. The standing wave
has a node line along .

In Fig. 2(c), we now change the frequency of the injected
TLM impulse stream to while conserving the
relative amplitudes and phases given in (6). During this TLM
simulation, the node line in the cavity will be shifted toward the
right due to the shorter guided wavelength, predicting the length
required for the 2-D cavity to resonate at. This new length

has thus been synthesized directly.
The synthesis procedure can be generalized to cases with sev-

eral designable parameters. Each designable parameterwill
be associated with a characteristic frequency obtained from the
design specifications. A standard TLM analysis of a starting
geometry determines the structure response and yields the rel-
ative amplitudes and phases of impulses incident on the parts

of the boundary that will be modified (without loss of gener-
ality, we limit ourselves to the case where is a perfect
conducting boundary). For each parameter, a synthesis phase
is then carried out during which is replaced by matched
TLM sources injecting a sampled sinusoidal signal with the de-
sired value of the associated characteristic frequency. To avoid
the excitation of spurious modes, a Gaussian-ramped sinusoidal
excitation of the following form can be used:

(7)

Here, is an index of the TLM link lines bounded by .
The parameters and are the relative amplitude, relative
phase, and frequency of the injected sinusoidal signal, respec-
tively. The parameters and are such that the bandwidth
of the excitation contains a single mode.

By injecting the signal at the boundary part , only one
degree of freedom is allowed for the modified structure. The
field model finds the desired boundary position within the con-
straints imposed by the starting geometry. This position is ob-
tained by examining the steady-state field envelope patterns

and/or

(8)

is the time index, while and are the indexes of the nodes in
the - and -directions, respectively. is the steady-state time
index. A new location of an electric wall is determined by a min-
imum of the tangential electric-field component. Similarly, the
position of a magnetic wall can be determined by finding a min-
imum of the tangential magnetic field. By virtue of the physical
properties of electromagnetic fields, this design procedure also
minimizes the losses and the sensitivity to tolerances.

It should be noted that the values of the designable parame-
ters are determined, through interpolation or extrapolation, with
ahigherprecision than thegridsize.However, toverify thede-
sign, the values of the parameters are usually snapped to the grid.

Our approach can be summarized by the following algorithm
steps.

Step 1) Initialize and obtain .
Comment: In the case of a resonant cavity, we have

and , the resonant fre-
quency. For an open structure, we may use

, where and
is the number of simulation frequencies. is the

size of the trust region used to limit the step taken.
Step 2) Obtain the characteristic frequencies corresponding

to the desired response .
Step 3) Perform the synthesis phase for each

to get .
Comment: Notice that may be scaled to
satisfy .

Step 4) Obtain using TLM electromagnetic
analysis.

Step 5) If , let
. Otherwise .
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Fig. 3. Flowchart of the synthesis algorithm.

Comment: The objective function is taken as
.

Step 6) If or Stop.
Step 7) Update , set and go to Step 3.
Note that the algorithm allows for more than one optimization

iterate if the desired response is not obtained in just one step. A
flowchart of the algorithm is shown in Fig. 3.

IV. EXAMPLES

The one-dimensional (1-D) and 2-D resonator examples
discussed above are rather straightforward. The 2-D resonator is
amenable to exact analytical treatment, and we have verified that,
in this case, the field synthesis procedure is accurate within the
second-order modeling error of the TLM mesh. To demonstrate
that the procedure also works for more complex narrow-band
and wide-band microwave structures, we present three more
examples, namely, a reentrant resonator, an inductive waveguide
discontinuity, and a simple waveguide bandpass filter.

A. Synthesis of a Reentrant Resonator

Fig. 4(a) shows the geometry of a 2-D reentrant resonator.
We assume that the electric field is normal to the cross section
and, hence, tangential to the conducting sidewalls. The optimiz-
able parameter is the length. All other dimensions are fixed at

mm, mm, and mm. We select a starting
value mm, discretize the structure with a 1.0-mm
TLM grid, and inject a band-limited signal containing the dom-
inant resonant frequency . The resulting steady-state electric
field pattern at resonance is shown in Fig. 4(b). During this first
analysis, we store all TLM impulses incident upon the optimiz-
able boundary from the five link lines bounded by it [see
Fig. 4(c)]. We can now proceed to the synthesis procedure.

After replacing the boundary with matched sources
[see Fig. 4(d)], we inject the desired resonant frequency while

preserving the relative amplitudes and phases of the impulse
streams stored during the analysis phase. Since the sources
absorb all impulses incident upon , a steady-state field
will establish itself in the resonator after some time. Fig. 5(a)
shows the electric-field profile along the symmetry axis normal
to for three values of the injected frequency. Extrapo-
lation of these curves yields the corresponding values of.
Fig. 5(b) compares the predicted value of the dimensional
ratio with the value obtained by subsequent TLM
analysis for different frequency ratios . Obviously,
the extrapolation is easier and more accurate if the design
frequency is higher than the initial value since the field
node then falls within the computational domain. Again, the
extrapolation can be performed with higher resolution than the
grid size. Furthermore, a second iteration can be performed if
the first guess for was too far off.

If the difference between the initial and synthesized values
of is larger than the mesh size, the lateral boundaries of the
reentrant notch are not adjusted during the synthesis phase and,
consequently, the synthesized field pattern has a node line that is
not parallel to , but looks like the contour shown in Fig. 6.
Here, we have made the notch somewhat larger
to show this effect more clearly. The smooth profile is, in fact,
optimized in the sense that it minimizes the field energy stored
around the face of the notch, thus suggesting a boundary pro-
file that reduces the risk of field breakdown and also minimizes
conductor losses if the boundaries are not lossless.

B. Synthesis of an Inductive Obstacle in a Waveguide

The next example demonstrates the synthesis of a centered in-
ductive post in a parallel-plate waveguide (see Fig. 7). The post
is much thinner than the wavelength and can thus be represented
by a lumped equivalent circuit for frequencies up to the cutoff
of the first higher mode in the guide.

If we want to synthesize the width and thickness so
that the post has specified equivalent reactancesand
(or specified frequency-dependent-parameters), we must first
identify a characteristic frequency associated with each of the
optimizable parameters and . By placing electric walls
(short circuits) at a distance from the post, we create a res-
onator that can sustain even and odd resonant modes (see Figs. 8
and 9). The general resonance conditions for these modes are

(9)

and

(10)

where and stand for “even” and “odd,” respectively. The odd
mode accommodates a short circuit in the– -plane and, thus,
its resonant frequency depends mainly on the value of. The
even mode accommodates an open circuit in the– -plane,
and its resonant frequency depends essentially on.

Our goal is to synthesize the dimensionsand of the post
in a parallel-plate waveguide of width mm. Its target

-parameter response is shown in Fig. 9(b). For this example,
we have generated the target response by analyzing, with the
TLM, a post with mm and mm. Our procedure
will allow us to synthesize these values from this response.



BAKR et al.: GENERATION OF OPTIMAL MICROWAVE TOPOLOGIES 2541

(a) (b)

(c) (d)

Fig. 4. (a) Reentrant resonator. (b) The envelope of the steady-state electric field in the discretized reentrant resonator forL = L . The mesh size is 1 mm� 1 mm.
(c) Detail of the TLM mesh in the vicinity of the optimizable boundaryB(L) where the incident TLM impulses are stored. (d) Matched TLM sources inject the
stored TLM impulses after shifting the frequency of their envelope to the desired value.

(a) (b)

Fig. 5. (a) Electric-field envelope pattern obtained for different values of the injected frequency. The corresponding values ofL are found by extrapolation. (b)
The value of the dimensional ratio� versus the frequency ratior for the reentrant resonator.(o) = values predicted by synthesis,(-----) = TLM analysis.

As mentioned earlier, we must begin with the TLM analysis
of an approximate structure. We choose as start values

mm and mm. To create the even- and odd-mode res-
onators, we must also choose a value forsuch that the near
field at the discontinuity is not perturbed, and that the even and
odd resonant frequencies are below cutoff of the first higher
mode in the waveguide. Once is selected, the target even
and odd resonant frequencies can be obtained by solving the
transcendental equations (9) and (10) using the specified target

-parameters. The choice of mm yields the following
target resonant frequencies.

• Even target resonant frequency: GHz.
• Odd target resonant frequency: GHz.

However, the initial TLM analysis of the resonator with start
values mm and mm yields the following resonant
frequencies.

• Even initial resonant frequency: GHz.
• Odd initial resonant frequency: GHz.

While the resonant frequencies obtained by the initial TLM
analysis are off target, the amplitudes and phases of the TLM
impulse streams incident upon the optimizable boundaries
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Fig. 6. Node line of the synthesized field pattern in the cross-sectional plane
for the caseW = 7mm. This boundary contour would minimize energy stored
at the notch face.

(a)

(b)

Fig. 7. (a) Geometry of an inductive post in a parallel-plate waveguide with
magnetic sidewalls. (b) Its equivalent lumped-element representation.

(a)

(b)

Fig. 8. Symmetric and reciprocal lossless two-port network representing
the inductive post. (a) Arrangement for regularS-parameter evaluation.
(b) Resonator created by shorting the input and output sections at distanceL

from the post.

are virtually identical to those incident at the target resonant
frequencies. After recording these amplitudes and phases, we
inject impulse streams at the even and odd target frequencies

(a)

(b)

Fig. 9. (a) Resonator created by shorting the reference ports of the inductive
post. (b) TargetS-parameter response of the post in a 60-mm-wide parallel-plate
guide.

normal to and , respectively, using matched TLM sources,
as shown in Fig. 4. The resulting standing-wave patterns are
shown in Figs. 10 and 11. Extrapolation of the field profiles
yields the exact specified post dimensions with a single sim-
ulation per optimizable parameter. If the difference between
the initial guess and final dimensions is very large, a second
iteration can be performed to improve accuracy, a measure that
is not necessary in this example.

C. Single-Resonator Filter

We have also synthesized the single-resonator filter shown in
Fig. 12. The designable parameters areand . The width of
the waveguide is fixed at mm. The starting geometry is
taken as mm and mm. All walls are perfectly
conducting boundaries.

The target -parameters are supplied by the equivalent cir-
cuit shown in Fig. 13. This circuit features ideal transmission
lines and an empirical model of the discontinuity [8]. MATLAB1

simulates the circuit as a cascade of uncoupled sections [9].
The target response along with the initial response is shown in
Fig. 14.

The characteristic frequency associated withis the resonant
frequency of the cavity formed by placing electric walls in the

1The Math Works Inc., Natick, MA 01760.
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Fig. 10. Electric-field envelope along thex-axis after injection of the odd
resonant target frequency at the end walls of the obstacle. The sources are
located atx = 2 mm. (Only one-half of the symmetrical cross section is
shown.)

Fig. 11. Electric-field envelope along they-axis after injection of the even
resonant target frequency of 2.0075 GHz at the sidewalls of the obstacle.
The sources are located aty = 3 mm (Only one-half of the symmetrical
cross-section is shown.)

Fig. 12. Topology of the single-resonator filter.

Fig. 13. Equivalent-network model of the single-resonator filter.

planes and . This frequency is the resonant frequency
of the midsection of the circuit in Fig. 13 when a short circuit is
placed across the two shunt inductances, and it can be obtained
from the equivalent circuit in Fig. 13. We inject that frequency

Fig. 14. Target response(o) and the initial response(-----) of the
single-resonator filter.

Fig. 15. One-fourth of the single resonator.

Fig. 16. Field envelope pattern for the outer cavity of the single-resonator filter
along the discontinuity width.

with a sinusoidal transverse source distribution at the left- or
right-hand side of a rectangular cavity, as discussed previously.
Note that we can reduce the computational effort by taking ad-
vantage of symmetry. We obtain a synthesized cavity length of

mm.
The characteristic frequency associated with is the

even-mode resonant frequency of the cavity generated by
shorting the input and output ports. We utilize the symmetry
properties of the even mode and use only one-fourth of the
structure in the synthesis phase (see Fig. 15). The envelope
of the electrical field, observed along the discontinuity plane,
is shown in Fig. 16. The desired width of the discontinuity,
snapped to the grid, is thus mm. The final response
of the filter is shown in Fig. 17. A good match with the target
response is obtained.
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Fig. 17. Target response(o) and the final response(-----) of the single-resonator
filter.

V. CONCLUSION

Thefoundationsofanovelapproachtomicrowavestructurede-
sign has been presented. We have utilized electromagnetic-field
synthesis todetermine the desired geometry. Each designablepa-
rameter has been associated with a characteristic frequency of
the structure. For each parameter, a synthesis phase has been per-
formed at the corresponding characteristic frequency. The field
envelope patterns have then been examined to predict the modi-
fiedgeometry.Ourapproachhasbeensuccessfully testedthrough
a number of examples. The approach will be extended to more
complex synthesis scenarios in the future.
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